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this analysis, were approximated from geometrical considerations. The
results showed that the piezoresistance model was necessary to under-
stand the gage response. However, many experimental results could not
be adequately modeled. Tmproved analysis requires a rigorous determina-
tion of the stresses and strains in the gage element.

A few well-defined experiments in support of the analysis, were
performed to determine the cffect of matrix stress rotation, gage strain
states, and shear loading on gage response. The matrix stress rotation
experiments gave definitive results and showed that the gage response was
governed mainly by the matrix stress component normal to the foil. To
understand these results, it is necessary to determine the gage stresses
and strains. S

To rigorously model the gage response, the page element was repre-
sented as an inclusion and the corresponding boundary value problem was
solved. The Eshelby method for elastic inclusions was modified to
include an elastic-plastic inclusion and to obtain solutions for leoading

and unloading. This procedure gave good agreement with experimental data.

Thus, the elastic—plastic inclusion formulation in conjunction with the
phenomenological model can explain piezoresistance response.
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SUMMARY

Piezoresistance stress gages have been extensively used for measuring
dynamic stresses both in laboratory and field applications. A review
of the past work shows that these gages, because of their adaptability
to a wide range of stresses and times and their survivability in severe
environments, provide a unique measuring system. However, the interpreta-
tion of the data for loading conditions deviating significantly from the
laboratory calibration experiments is questionable. Also, the gage

response in laboratory calibration experiments is not well understood.

The goal of this research effort was to develop an improved understand-
ing of piezoresistance gages and to model their response to applied
loads to permit improved stress measurements. The work focused on

analytic developments, with a few experiments performed in support
of the analysis. Specific attention was given to the mechanical interac-

tion between the gage and the matrix.

First, a phenomenological model was formulated to calculate the
resistance change of a gage element subjected to mechanical deformation.
This formulation incorporates the tensor nature of piezoresistivity,
elastic-plastic response of the gage to include mechanical and electrical
hysteresis, and dimensional changes. The resistance change expression
derived herein is markedly different from the empirical relationship
currently used to interpret gage data. This expression points ocut
the importance of knowing the strain states in the gage element and
the material constants for the gage. The difficulty of inverting the
gage data to determine a particular matrix stress component is also

indicated.

Second, past laboratory shock wave data on Manganin and ytterbium
were analyzed in terms of the phenomenological model. The stresses and
strains in the gage element, needed for this analysis, were approximated
using an approach similar to that of Barsis et al. (Ref. 17). For

analysis of these data, the normal stress was assumed to be the same as

in the matrix and strain states were assumed to bhe either one-or




two-dimensional. The results showed that the phenomenological model was
necessary for understanding the piezoresistance response under shock
loading and for reconciling shock data with data from other loading
conditions. The importance of gage plasticity in modeling the gage
response was demonstrated. There are, however, many aspects of the
experimental results that cannot be explained by the approximate analysis:
Manganin data for a wire and a foil (with similar hydrostatic response)
cannot be explained by a single set of parameters, hysteresis corrections
cannot be easily incorporated, and the role of matrix stresses and
strains on the gage response cannot be determined. These difficulties
have pointed out the need for rigorously determining the stresses and
strains in the gage element, and the material constants required in the

phenomenological model.

Third, a few experiments were performed on ytterbium to examine the
role of some important mechanical variables, and to provide data for the
subsequent gage-matrix interaction analysis. These experiments examined
the effect of (1) rotation of matrix stresses, (2) varying the strain
states, and (3) shear loading on the gage response. The latter two set of
experiments revealed some interesting results, but they are inconclusive
because of lack of experimental reproducibility. The effect of shear
loading should be reexamined in future work. The matrix stress rotation
experiments showed that the gage response is governed mainly by the stress
component normal to the major surface of the foil. These data showed that
gage calibrations for one gage orientation with respect to the matrix
stress field cannot be applied to another orientation. Also, the resulrts
for the rotated orientation (rotated through 90° from the usual orienta-
tion) could not be analyzed because the foil stresses and strains in this
case could not be easily related to the matrix stress or approximated

from simple geometrical constraints.

Finally, to rigorously determine the stresses and strains in the gage
foil, the foil was modeled as an inclusion in the matrix and then the
corresponding boundary value problem was solved. The foil was modeled
as an elliptical inclusion and Eshelby's technique (Ref. 48) for elastic

elliptical inclusions was used to determine the stresses and strains.
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The results of the matrix stress rotation experiments were selected to
check the analytic solution. The results showed that the elastic inclusion
solution was not appropriate for modeling the gage response. Hence, the
Eshelby method was modified to include an elastic-plastic inclusion and

to obtain solutions for loading and unloading. This procedure gave good
agreement with the data. Thus, the main result of this work is that the
elastic-plastic inclusion solution in conjunction with the phenomenolo-
gical model can explain the response of piezoresistance gages to mechanical
loading. The gage-matrix interaction analysis rigorously shows why the
gage response in the usual shock wave experiments is dominated by the
normal stress as assumed in the empirical relationship. The theoretical
solutions show many interesting features during the elastic-plastic tran-
sition and upon unloading, and should be compared with experimental

results over a wide range of stresses. Effect of the foil aspect ratio

can also be determined with this analysis.

In conclusion, the objectives of the present study were successfully
completed. The response of piezoresistance gages to mechanical loads
can now be explained and modeled with a phenomenological model. However,
further work is needed to determine the material constants for the model,
to quantitatively account for gage hysteresis, and to quantitatively
confirm the present work over a wider range of loading conditions.
Specific recommendations for using piezoresistance gages in complex

loading situations are presented.
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SECTION 1

1.1 MOTIVATION AND OBJECTLIVES

Characterization of dynamic stresses/loads in geologic media and
around structures is an important and continuing requirement for DNA
programs both in laboratory and field applications. - Ascertaining
material and structural response, improved development of material models,
and verification of code calculations require reliable stress measurcements.
Because of their adaptibility and survivability, piezoresistance gages
are used extensively for stress measuremnts.4 These gages are unique
because of the stress range (1 MPa~100 GPa) and time range (20 ns-static
loading) over which they can be used.5 Gage usage is based on an
empirical relationship between the resistance change and one stress
component obtained from a laboratory calibration experiment along a
particular loading path (uniaxial strain). However, detailed examina-
tion of the theoretical relationship between the resistance change and
mechanical loading (discussed in Sections 1.2 and 2) shows that
piezoresistance gage response is more complex and denends on several
variables; therefore the current interpretation of gage data for loading
conditions deviating significantly from the laboratory calibration is ques-
tionable. Cross-checking with other page types and/or numerical calculations
is not satisfactory because these results are themselves prone to error
(particularly in field data). To increase confidence in the use of
piezoresistance gages and to develop better gage packages, we need
to develop a more fundamental understanding of piezoresistance gage
response. Specifically, this approach is needed to determine the
accuracy in using these gages, in resolving differences between field
data, and in making better stress measurements under conditions of interest.
The goal of the present work was to attain an improved understanding
of piezoresistance gage measurements by performing well-defined
analyses and laboratory experiments. An important aspect of the present
work was to focus attention on the mechanical interaction of the gage

with its surroundings. This problem, though useful for all gage types,




has received little attention in previous studies. Some specific objec—
tives of our work were as follows:
® Develop a phenomenological model for piezoresistance to
calculate resistance change under mechanical loading. Review

the literature and analyze the past data in terms of this
model.

® Experimentally determine the role of matrix stresses, shear
deformation, and strain states in the gage on the gage response.

® Develop a theoretical analysis to examine the mechanical
interaction between the gage and the matrix material.

1.2 BACKGROUND

In this subsection we briefly discuss piezoresistance gage usage,
review the past work, and summarize the findings. Instead of presenting
a chronological review of the past work, we discuss related previous
studies in analyzing the working of a piezoresistance gage. Hence,
not every paper on the subject that is known to us is included in the
discussion. However, the literature cited is sufficiently comprehensive

to provide a good state-of-the-art review. ’

The resistance of a conductor can be written as

A (L.1)

where p is the resistivity, £ is the length, and A is the area of cross-
section normal to the length . The vector nature of R and the tensor
nature of p have been intentionally suppressed for the present. The
conceptual basis for using piezoresistance gages to measure stress

is based on relating the change in resistivity (p) of the gage to

applied stresses. We emphasize, for later discussion, that the experi-
mental measurements consist of measuring resistance (R) and not
resistivity (p) changes.* Therefore, the term 'piezoresistance' is more

aporopriate than 'piezoresistive' to denote these gages.
P P

* : I3
The inability to directly measure resistivity causes many of the
difficulties in complex loading situations.

10
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The use of piezoresistance gages dates back to the high pressure
work of Bridgeman and others at the turn of the century.6 Bridgeman
was also the first to formulate the tensor nature of piezoresistance
measurements.7 Since then, these gages have been used routinely in
high pressure studies to monitor hydrostatic pressure.8 In addition,
an understanding of piezoresistive phenomenon, particularly in semi-con-
ductors, in terms of the band structure of solids has been an area of

interest to solid state physicists.”’

Because the present work is
concerned with gage response for application to stress measurements, we

will use a purely continuum approach in our discussion.

The first attempts to develop piezoresistance transducers for
dynamic loading* appear to be those of Hauver,11 who measured
resistance changes in shocked sulphur. Subsequently, in 1964, Fuller
and Price, and Bernstein and Keough reported piezoresistance measurements

for Manganin wires under shock loading.lz’13

In these and subsequent
studies, the principle for using these gages can be summarized as
follows: 1In a calibration experiment, the resistance change of an
element (contained) in a matrix is measured as a function of a

s e . Lo .
specific stress component in the matrix. By repeating the measurements

for several stresses, we can write the following empirical relationship

AR (1.2)

where AR = change in resistance
R0 = original resistance
On = peak longitudinal stress in the matrix
K = empirically determined constant that is generally a function

of ¢ .
n

*
The development of piezoresistance transducers for dynamic loading
was a direct outgrowth of the high pressure work.

+Most calibration data are based on shock wave uniaxial strain experi-
ments and the stress component is the longitudinal or normal stress
component. Note, uniaxial strain refers to the state of strain in the
matrix.

11




Once K has been determined, the gage measurement from an experiment

of interest can be used to determine oL by inverting Equation (1.2).

We point out that the use of piezoresistance gages in shock loading
is assumed to involve no stress wave phenomenon. The gage is like a
static probe that can respond rapidly to the stress states around it.
The differences between gage response under hydrostatic loading and
shock wave loading occur because of differences in the mechanical state
of the gage in the two cases.

Since 1964, many papers have been published on calibration of
piezoresistance gages. Most of the work has been on Manganinm—19
(nominal composition 84% Cu, 12% Mn, and 47 Ni) with a few studies on

2
ytterbium. 0,21

Manganin, in contrast to ytterbium, has the advantages
that its resistivity is relatively insensitive to temperature, the
batch-to-batch material variability can be better controlled, and the
response is nearly linear (constant K) over a wide stress range.
Ytterbium gages have been primarily developed in the last 5 to 10 years
and their principle advantage over Manganin is their greater sensitivity
to stress.* Therefore, Yb gages are preferable in the range 10 MPa-

2.0 GPa. (The upper limit for using Yb is 3.0 GPa.) For stresses above
2.0 GPa, the resistivity changes in Manganin are sufficiently large

and the use of Manganin is preferable because of the other advantages

cited above.

Under dynamic loading the most common usage of piezoresistance
gages has been in measuring longitudinal stress in shock wave uniaxial

strain experiments in the 1 to 20 GPa range. Even for this particular

Because of its low atomic weight, carbon is often used in stress measurce-
ments in radiation deposition studies. Recently, these gages have been
used in conventional shock studics.22- In our work, we focus on

Manganin and ytterbium because thesc are most commonly used. Other
materials that have been considered, but not pursued, as piczoresistance
gages are Li and Ca.




Wy el e - e 4,

b B B S g

loading configuration, many different calibration studies (determination
of K versus on) have been reported. These studies have largely been
prompted by the need to calibrate the specific gage material and grid
configuration being used in a particular series of experiments. The
lack of a universal calibration (or a standard gage type) in prior work
is inefficient, but does not pose a conceptual difficulty in gage usage

for uniaxial strain experiments.

In recent years, there has been a growing interest in extending
the use of piezoresistance gages to loading conditions far removed from
the hydrostatic high pressure and/or the shock wave uniaxial strain
configurations. This is particularly true for DNA field applications
and armor penetration studies. Unfortunately, extrapolating the gage
response (or calibration) to new loading conditions may not be simple.
The empirical procedure indicated by Equation (1.2) and discussed earlier
is satisfactory if the gage is used in a loading situation that closely
matches the calibration conditions. When the two do not match, the
empirical calibration studies are of limited use in extrapolating the
gage response. Because of the lack of an alternative, the uniaxial
strain calibration is commonly used for other loading situations
(e.g., divergent flow). In the following paragraphs we discuss the
factors that make it difficult to apply uniaxial strain calibration to
more general loading conditions and to invert the gage data under

*
arbitrary loading.

The calibration experiments measure resistance change and not
resistivity; thus resistivity and dimensional changes cannot be ecasily
separated. 1If, in the experiment of interest, the dimensional changes
are significantly different f  'm the calibration experiments, then it is
difficult to account for them. One potential solution that has been
suggested is to use a nonpiezoresistive material to obtain a measure
of purely dimensional changes in the experiment of interest.26 This is
an interesting concept that needs to be further examined theoretically
and in well-defined experiments. This concept is discussed further in

Section 2.73.

*
Some of the discussion presented here uses concepts that are described
in Section 2.

13




The function relating resistivity changes and stress, in general,
is not a scalar but a fourth-rank tensor.27 For isotropic materials
(wich describe all the polycrystalline materials of interest), there
are two independent constants similar to Lame's constants in elasticity.
Also, for applications to high stresses the nonlinear form of these
constants needs to be included. Without a knowledge of the complete
set of constants, it is not possible to invert the resistivity measure-
ments to determine the corresponding stresses., In fact, the tensor nature

of piezoresistivity raises the question: 1Is the response related uniquely

to only one stress component as is commonly assumed? This question is

considered in detail in this report.

The gage undergoes plastic deformation, which results in residual
resistance as is commonly observed in shock wave uniaxial strain data.
The hypothesis that this residual resistance is caused by the production
of lattice defects (the change in the stress—-free resistivity) is
supported by studies on annealed and cold~rolled Manganin28 and Silver29
foils. 1In Sections 2 and 3, we discuss another contribution to
residual resistance: mechanical hysteresis. This phenomenon, expected
to be important at low stress levels, has not been considered in previous
studies. Grady and Ginsberg reconciled their shock data on Yb with the
hydrostatic data by subtracting the resistance that remained after
unloading from the peak valuo.30 Steinberg and Banner proposed an ad-hoc
method to account for resistance hysteresis by using a different cali-
bration for loading and unloading.31 More recently, Vantine et. al.,
on the basis of a large number of experiments in Manganin, have presented
an empirical approach to account for the hysteresis.32 They present a
single relation for use during loading and unloading. The difficulty
with these approaches is similar to that in using Equation (1.2). As
long as the use of the gage is similar to the calibration conditions,
the correction may be adequate. However, for loading conditions that
deviate from the calibration conditions, the procedure will lead to errors,
The magnitude of these errors depends on the loading conditions in &
particular application. A more fundamental approach is needed to

account for hysteresis corrections.
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Finally, there is the question of gage-matrix mechanical interaction.
(In actual usage the gage is generally contained in a thin film of epoxy.)
There are two main contributing factors: the gage shape and the difference
between the mechanical properties of the gage and the matrix. Calibration
studies on wires and foils with similar hydrostatic response give
different results under shock loading, demonstrating that the shape (or
at least large differences in the aspect ratio) can make a difference.16
We point out that most experiments are now done with foils. Whether
small differences in aspect ratio can make a large difference in
calibration is not known.

Except for two papers,1 30

the subject of actual strain states

in the gage foils has not been considered in past work. Even in these

two studies, simple strain states were assumed, as discussed in detail

in Section 3. There have also been attempts to vary the matrix material
and examine the gage response in uniaxial strain loading.16 The results
are inconclusive because of large scatter in the data. Although the gage-
matrix interaction problem can be neglected for uniaxial strain
applications with thin foils* (because the calibration data are for similar
conditions), it may be very important for using a gage calibration from
one loading situation to a different loading situation. Our examination
of existing papers shows a general lack of gage-matrix interaction studies
in the use of piezoresistance gages. We point out that in field applica-
tions, there is an additional metallic encapsulation to facilitate
handling and to improve gage survival. 1In such situations the gage-matrix

interaction must include the influence of the metallic encapsulation.

Clearly, the response of piezoresistance gages to mechanical loads
is complicated. Although we have attempted to separate these complexities,
for an actual experimental situation they are coupled, making the inversion
of the gage data difficult. 1In fact, it can be questioned whether these
gages can ever be used with a high degree of accuracy in testing
situations that deviate significantly from the calibration loading

conditions. Before taking such a pessimistic position, it is important

to examine the reasons for using these gages and to review the experimental work.

*
This is demonstrated rigorously later in this report.
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The main reason for using these gages is their versatility and the
general lack of suitable alternative methods for stress measurements.
Although piezoelectric or diaphragm (strain gages) gages can be used
for a specific situation, they are far too restrictive compared to

. - 2 .
piezoresistance gages. Studies™?

9 at SRI have shown that with special
care, piezoresistance gages can be used for stresses as low as 1 MPa and
as high as 100 GPa. The lower limit is with Yb gages and the upper
limit is with Manganin gages. No other gage type even approaches this

stress range.

In addition to the wide stress range of usage, the piezoresistance
gages can be used over a wide range of time scales. By using thin
gages, it is possible to achieve time resolutions of 20 ns in shock
wave experiments. On the other hand, the same gages can be used for
static loading situations. Even in field applications, measurements
approaching static time scales have been obtained by suitable design
of gage packages and allied instrumentation. Piezoresistance gages
have also shown good survivability in fairly severe environments.
Because of the adaptability to a wide range of stresses, times, and their
survivability in severe environments, we conclude that piezoresistance

gages provide an impressive and unique measuring system.

In summary, the work to date has shown that piezoresistance gages
are uniquely suited for experimental measurements, but that the
interpretations of the data and error estimates are questionable
because of the many complexities. These deficiences are recognized by
workers in this area and the approach to date has been to minimize them
by optimizing gage designs. For example, gage packages are designed
and emplaced so that a particular component of stress (most often
stress normal to the gage) has the largest contribution; strain compensa-
tion to correct for dimensional changes in divr:rgent conditions have
been attempted. These techniques, though usefu! and often necessary,
cannot always be analyzed rigorously to provide quantitative estimates

17,30

of error. Except for two papers, discussed further in Section 3,

tbeoretical work in this area has been lacking. To make optimal usc of

16




piezoresistance gages, theoretical analysis and developments are

needed to supplement the experimental innovations.

1.3 APPROACH

To facilitate our discussion of the approach, we divide the investi-
gation on piezoresistance gages in to two parts: (1) the direct problem,
that is, determining the resistance change due to applied mechanical
loads, and (2) the inverse problem, that is, determining the state of
stress (or a specific component of stress) from resistance change measure-
ments. In this report we focus mainly on the direct problem. If we can
determine and model the resistance change due to applied loads and
separate out the contributions of the different phenomena discussed
in the last subsection, we can attempt to invert gage data in a particular
situation. Although inverting the gage data in a completely arbitrary
situation may never be possible, the work presented here should aid in
the design of gage packages to permit inversion of resistance change

measurements in specific situations.

To solve the direct problem, we first develop a continuum piezoresistance
model to relate the resistance change to mechanical loading. The past
data are reviewed and analyzed using this phenomenological model to
determine how and why the gages work and to identify the shortcomings in
previous studies. A few well-defined experiments are described to
examine the role of some key mechanical variables and to provide data
for analysis. A theoretical analysis is presented to examine the mechanical
interaction between the gage and the matrix. This analysis is checked

against experimental data to determine its validity and usefulness,

A brief discussion of the implications of this work for the inverse

problem is also presented.

17




Section 2

MODEL FOR PIEZORESISTANCE

This section describes a ohenomenclogical model to calculate the
resistance change in a gage element subjected to elastic-plastic defor-
mation.* We can then examine how these relations may be inverted to
provide stresses from resistance measurements. The development consists
of incorporating plasticity in the piezoresistive relations presented by
Mason and Thurston33 for elastic solids. Some aspects of the work are
similar to the developments presented in References 17 and 30; these

papers are discussed further in Section 3.

Figure 2.1 shows an initial undeformed and a deformed configuration
for the gage element. Our objective is to relate the resistance change
between these two states-~that is, to obtain expressions for resistivity
changes and dimensional changes while simultaneously satisfying the
mechanical constitutive relation. Throughout this work, we will assume
material isotropy. The relations are in the incremental form and can

therefore be used for large strains.
2.1 RESISTIVITY CHANGE DUE TO DEFORMATION

Mason and Thurston33 presented the phenomenological development of
piezoresistivity for elastic solids by considering the electric field Em
as a function of the current density Jm and stress Oij' This development
is similar to other equilibrium and non-equilibrium processes that are
based on a tensor formulation of the crystalline properties.27 To extend

this approach to elastic-plastic deformation, we proceed as follows.

The resistivity tensor and its components are defined using the
N

generalized Ohm's law’

E, =p, - J (2.1)

*
At present, we restrict our work to purely mechanical deformation and
ignore thermal effects.

3
'Unless otherwise stated, we will use the summation convention and assume
tensile stresses and strains as positive.
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For cubic and isotropic materials, the resistivitv ... is a scalar: 7
- im

“osim’ where Gim is the Kronecker delta. The resistivity in the deformed
contiguration can be written as

Bv considerine the resistivitv as a function of elastic strains (or

stresses) and plastic strains, we can write

'Qim Yy
! _ \ im p
W, = 0 LT Y, o+ - A E 2.3)
im 0 Wl v k- WP ik (
jk
= A0S+ AP
im i

In the above expressiovn, the nartial cerivatives imply that the other
variable is being held constant. The first term represents the change
in resistivity cue to stresses (elastic strains) and is reversible if
the stresses are removed. The second term represents an irreversible
change in resistivity that is caused by production of lattice defects
in the solid. For example, the second term is responsible for changes

in the resistivity between an annealed and cold-worked material.

For discussing hysteresis later in this work, it is useful to define a
stress-free state corresponding to the deformed configuration (Figure 2.1).

The resistivity in this state can be expressed as

1
(o2}

.

im o im (2.4)

+ (s,
o] im

Note that the stress-free resistivity is taken to be a scalar in agreement

with our assumption of material isotropy.

In all of our work the term piezoresistivity applies only to the

. e * . .
elastic term Apim. This elastic component of the resistivity change

*
Because plastic strains are also present, there is confusion in the shock

wave literature. 1In the papers by Smith,9 and Mason and Thurston, 33 only
elastic solids were considered and the difference between strains and
stresses was inconsequential.
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where the coefficients ”"k¢ are the appropriate partial derivatives from
ijke

tEq. (2.3) and are components of a fourth-rank tensor termed the piezoresis-
tive tensor. This tensor is similar to the compliance (or stiffness)

tensor in elasticity as far as the nonzero and independent terms are con-
cerned.  There is, however, one major difference: Whereas elastic constants
tend to be independent of the lattice defect density, the same is not

true for the piezoresistive coefficients. Piezoresistive coefficients
depend on heat treatment (e.g., annealed and cold-rolled foils have

different coefficients).

Equation (2.5) is the fundamental relation underlying the use of
piezoresistance gages for stress measurements. For cubic material, there
il i and 7, ,. Here we have used

11’ 12 44
the matrix notation and Equation (2.3), in this notation, is written as

are three independent components:

Ap = n e« 0 (2.58)

where the subscripts range from 1 to 6 and the complete piczoresistive

matrix is written as

”11 n12 HIZ 0 0 0
»1“ ”12 0 Q0 0
N 0 0] 0
- = 11 2.6)
”4& 0 0
Y 0
4%
Ta

Yor the present work, the intcerest is in isotropic materials and there
. , i -2
are only two independent components '1], 1o hecanse  ,, = , .
- R -




For isotropic materials, it is convenient to write Eq. (2.5) similar to

Hooke's law

AnE = 5 2028
Akij Py [OAme . Sij + ZMAJij] (2.7)

*
The constants ¢ and B are material constants similar to Lame's constants
in elasticity. These constants can be obtained by measuring resistivity

changes due to applied stresses in the elastic range.

The plastic component of the resistivity change is written similar
to Equation (2.5)

SPoo L
A} im *O ﬂuW Sim (2.8)

where W’ is a scalar measure of plastic deformation and n is a material
constant relating changes in plastic deformation (at constant stress) to
resistivity changes. Two possible scalar measures of plastic deformation

that may be used are

Awp = 0,,/3{?,
ij ij

or
D

~p o~ P ;
5 1/2 (x,,ij . Lij)

The first measure is the plastic work and the second is the second

invariant of the deviatoric plastic strain. At present, we do not know

of any data for piezoresistance gages that can be used to evaluate Equation
(2.8).
Combining Equations (2.7) (2.8), and (2.2), we can write the resis-

tivityv in the deformed state as

o, o= o8, 4+ A S, 4 280 + nawPs
j 0 mm  ij i n R (2.9)
Equation (2.9) can be used to determine the resistivity change for a given
mechanical loading, if the constants ¢, ¢, and n are known. %e also point

out that the stresses appearing in Eq. (2.9), for a given deformation,

= 5 5 o={n - 1 2
12° ~ (11 ]2)/
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must be compatible with the mechanical constitutive model discussed in

the next section.

The relations presented above are valid for large strains because
they are in an incremental form. By making o and B a function of stress,
we can include nonlinear terms. This procedure, though reasonable, is
an approximation to a nonlinear theory. In the nonlinear theory, higher
order terms in the Taylor's series expansion (Eq. 2.3) would need to be
included. Given the present state of the art, we feel that our approach

is adequate.

2.2 MECHANICAL CONSTITUTIVE MODEL

The resistivity changes due to deformation must be calculated in
conjunction with the mechanical constitutive model. For purely elastic
deformations of the gage, the plastic work term in Equation (2.9) goes
to zero and stresses are readily known from Hooke's law. However, for an
elastic-plastic response, the terms in the square brackets cannot be as
easily determined from a knowledge of strains and an inelastic consti-

tutive model must be considered.

Although several papers have reported the hydrostatic compressibility
of piezoresistance materials, little data exist on the yield and deforma-
tion behavior for these materials. Also, when these data exist, they
are of little value unless they are for the same material that was used
in impact calibration studies. This is because the yield data, unlike
compressibility data, are strongly dependent on impurities and heat
treatment. Given the general lack of needed data, we will assume the
simplest inelastic model: An elastic-perfectly plastic model. Work
hardening can be easily added if future data warrant such an addition

to the model.

The equations presented below are the usual textbook relations used

4
for metal plasticity.3 Stress is separated into deviatoric and spherical

components




Because these gages can be subjected to large compressive pressure P

(- Jmm/B), we express the pressure-volume relation as

2
P = An + i

where {1 = D/D0 - 1. D is the density and A and B are material constants.

Using the usual procedure for metals, we include all the inelasticity

in the stress deviators. The equations in the incremental form are

(1) Additivity of elastic and plastic strain increments
A: .. = Ale.). + 1.\51.)
1] 1] 1]
(2) Hooke's law for elastic strains

Aot = 2GMh
ij 1]

(3) Yield surface of the von-Mises type

f = J2 -Y = 0

where

1.7 = L o,

. - U

2 2 7ij ij

Work hardening can be included by making Y a.function of plastic work

. ) . . .
W or plastic strain »&j. In accordance with the last subsection, ¥
P

also marks the onset of resistive hysteresis,
(4) Plastic Incompressibility

A p = 0.
mm

Appendix A presents the elastic-plastic relations for some simple

X z2

and a particular two dimensional strain (sK = 'y # 0, v, = 0). For

arbitrary loading conditions, the imposed strain field in conjunction

situations used in Section 3: One-dimensional strain (»y £0, = = Q)

with our material model provides the stresses. These stresses in turn

provide the resistivity change through Equation (2.9).
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The elastic-plastic response of the gage is also responsible for
the residual resistance (or gage hvsteresis) observed in experiments.
This hysteresis can have two contributions: (1) changes in the stress- :
free resistivity caused by the generation of lattice defects—-that is,
permanent resistivity changes, and (2) mechanical hysteresis--that is,
residual stress and strains in the gage due to plastic deformation.
Previous work21 has attributed all of the hvsteresis observed in shock
wave experiments to changes in the stress-free resistivity. This is in
error, particularly at low stresses, where the mechanical hvsteresis
contributions can be quite large. This topic is discussed further in

Section 3.2.

2.3 USE IN EXPERIMENTS

In this subsection, we present the relations relating resistance
changes to the imposed deformation. To aid writing the relations, we
introduce the following nomenclature. We define a right-handed coordin-
ate svstem (fixed on the gage element) such that the X axis is along the
gage width, the Y axis is along the guage thickness, and the 7Z axis is
alons the gage length. All variables of interest will be transformed

to this system.

In accordance with the experimental measurements, we will always
consider the electric field ﬁ and the current density J along the gage
length, The choice of coincident electric ticld and current vector
eliminates any shear stress contribution to A’ij'* The resistance

. . . *
along the Z direction is written as

(2.10)

where py Vo %7 = gage length, and Ay = arcea of cross section normal to
the Z-direction. Denoting the variables in the initial state with the
¥ :
If the only resistivity changes of interest are Ao, Moy, Ay, then
the form of the i-matrix in Equation (2.6) does not permif “contribut ions
from o, (i # j).
ij :

+ p . . . . . :
No summation convention will be implied with capitalized subscripts.
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subscript '0', we can write the resistance in the deformed state as

A (2.11)

Substituting for Boy, from Equation (2.9) and defining the dimensional

contributions by

¢, - Qi
_ i 0
My = v,
io
We can write Equation (2.11) as
E R7 p (l+/\t 7
‘ = . : 20 + N - .
Ro [1 + l(AOX + \oY + AOz) + .AOZ nAW (E;AEY)(1+Atk) (2.12)

Equation (2.12) is the general relationship between the mechanical deformation

and the resistance change measured by the gage. In the small strain
approximation, the inrremental quantities in Equation (2.12) can be replaced
by their total values. In the remainder of this report, we have used

this approximation.

Equation (2.12) shows the importance of knowing the strains in the
gage element. A knowledge of these strains coupled with the constitutive
model, permits the determination of stresses and hence the resistance
change. We emphasize that the stresses and strains in Equation (2.12)
are those in the gage element and not in the matrix. This point has not
always been appreciated in past work35 and is discussed further in

Section 5.

In using piezoresistance gages, the objective is to invert the
resistance measurement to determine a particular stress component in the
matrix. From Equation (2.12) we can see that inverting the resistance
change data is not a simple task. This then raises the question: How

can the simple empirical relation given by Equation (1.1) be used when

26




the actual response (Eq. 2.12) is so complex? The resolution to this
question lies in the gage shape, gage plasticity, and the nature of the
shock wave uniaxial strain experiments. In Section 5, we show that for
a thin foil gage in a matrix subjected to uniaxial strain, the response
is determined primarily by the normal stress in the matrix. Thus, the
gage can be used to measure normal stresses provided the matrix is under

uniaxial strain. This simplification is not possible in general.

To invert Equation (2.12) for an arbitrary loading condition requires:
several gage measurements, knowledge of the various constants, and an
independent determination of the gage strains. Determination of o, [, 1,
and the yield stress, although involved, can be made from well-defined
laboratory experiments. On the other hand, the determination of strains
is conceptually difficult because it depends on the specific situation
of interest (the gage-matrix interaction problem).

Independent measurements of strains have been considered in previous

26,35 . . . -
’ to correct for dimensional changes in divergent flow conditions.

work
Using the developments presented in this section, we can examine the
requirements for using nonpiezoresistive materials to independently
monitor strains: (1) The material used for measuring strains should be
mechanically similar to the piezoresistance gage material and should be
placed similarly to the gages (see gage-matrix interaction in Scction

5), (2) the coefficients o and § should be zero to ensure that stresses
or elastic strains do not result in resistivity changes, and (3) the
coefficient n, relating stress-free resistivity to plastic deformation,

in the two cases should be similar. These requirements are quite restric-
tive and point out the difficulty in accurately correcting for dimensional

changes.,
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SECTION 3
ANALYSITS OF PREVIOUS WORK

This section presents an analysis of past shock wave calibration
data on Manganin and Ytterbium using rhe formulation given in Section 2,
The thrust of the analyvsis is on reconciling shock wave data with hydro-
static measurcments of resisctance change to understand the response for
different loading conditions.,  Previous analvses for these materials have
been presented by Barsis ot ;11.17 (Manganin), and Crady and Ginsbvrgm(\'h).
We have reanalyzed their data and extended the analysis to Lee's data
on Manganin. The procedure adopted here allows us to determine the
adequacy in modeling the existing data, shortcomings in the analysis and/or
data, and provides guidelines tor improving the present understanding and

usage of piezoresistance gages.
3.1 ANALYSIS OF MANCANIN DATA

Manganin has been extensively studied since 1964, Fipure 3.1(a)
. . . 16-18, 35 .
shows the data from four studies. * These data are from Manganin
foils and wires and the encapsulation materials range from epoxy to
. . - . 1 35 .
metals and hard ceramics.  Except for Charest's data, the data are in
reasonably pood agreement on this plot.  Figure 3.1(b) shows only the
. 17 18 . *
data ot Barsis ot al. and Lee on a K versus normal stress plot.
Other data shown in Figure 3.1(a) have been left out because they are
not as cextensive and show a wide variation when compared with the data
shown in Figure 3.1(b). Also shown is a horizontal line that represents
the hydrostatic coefficient K(P) for Manganin., Both studics reported the
same coetticient for hvdrostatic Teoading. Barsis ot al. used Manginin
foil grids surrounded by epoxy and/or plasma-spraved ,\l_,(); and these were

S .17 . .
shocked in o 2024 aluminum or "ucalos matris, Leo used Manganin wire

K = /0 3 the K oversus oy plot magnitics the scatter in data,
n
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*
completely contained in C-7 epoxy. Above 30 kbar, both sets of data
are in good agreement and are approximately parallel to the hydrostatic

line. Below 30 kbar the data have no clear patterns.

Barsis et al. appear to be the first investigators to consider a
piezoresistivity tensor analysis for shock wave data. They also made
the first quantitative attempt to explain cthe nonlinear K - % data
shown in Figure 3.1(b) and to reconcile the shock wave data with !

hydrostatic measurements. The equation used by Barsis et al. to

analyze their data is similar to Equation (2.12) with the following

exceptions: (1) In their work they do not consider changes in stress-

free resistivity; that is, the wP term in Equation (2.12) is taken to
be zero; (2) they choose to express their piczoresistive equations in
terms of total strains; that is, instead of Equation (2.9), they use the

following equarion

v = r . &, + 2r .

ij o ij o T mm G.D

where rij is the resistivity. Ty and ry are like o and R in our work.

We believe that Equation (3.1) is incorrect because the resistivity

changes are caused by stresses (or elastic strains) and not total strains.

For example, if a conductor undergoes stress-free deformation, its

resistivity cannot ('hange.+ As discussed below, we can simulate their

analysis and results by setting B and n equal to zero in Equation (2.12).
e

Also, tem = mm in Equation (3.1) because of assumed plastic incompressi-

bility.

A key aspect of the work by Barsis et al. was recognizing the
importance of strain states in the gage and then attempting to account
for them in the analysis. They analyzed their shock data assuming onc-
and two-dimensioral strain states in the gage. They argued that the two-

dimensional strain state (sx = fy + 0, ‘z = 0) was a better representation

- :
We remind the reader that on refers to the stress in matrix.

+
Changes in stress-free resistivity due to the wP term in Eq.(2.12) are
not considered in the work by Barsis et al.
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of the gage geometry* and differences in the Manganin and epoxy impedances.
Their analysis was based on using rU = 0 (similar to assuming B = 0 in

our work). By assuming a two-dimensional strain state, they reconciled
their shock and hydrostatic data and fitted the nonlinear response

indicated by their data (Figure 3.1b).

We have analyzed the data of Barsis et al. and Lee's data using
Equation (2.12). We emphasize that our procedure parallels the analysis

by Barsis et al. because we assume B = 0 and n = 0. The analysis consisted

of the following steps.

; (1) The hydrostatic resistance data are converted to resistivity 1

. . .1
using the Manganin pressure-volume relation

P = 1160 u + 4120 U2 (3.2)
where p = D/Do ~ 1 and P is in kbar. Appendix B shows how
the dimensional term in Equation (2.12) can be expressed in
terms of density changes.

(2) The resistivity-pressure data were used to obtain . (P)

o = - 7.042 x 107% (1 + 1.564 x 10"’?) (3.3)

(3) Using a(P), B =0, n= 0, the resistance change can be
computed from Equation (2.12) provided the stresses and
strains are known. The normal stress in the gage is assumed
to be the same as the matrix. By assuming a particular strain
state, we can then calculate the other stresses (Appendix A).

17
The yield stress (Y°) used in these calculations is 2 kbar.

Figure 3.2 shows the calculated curves for one-~ and two-dimensional
strains and the data from Figure 3.1(b). The agreement between the two-
dimensional strain curve and the data of Barsis et al. merely confirms
their result. However, the data of Lee agree better with the one-
dimensional strain curve. This is difficult to explain because the wire
geometry used by Lee more closely approximates two-dimensional strain
than the geometry used by Barsis et al.

*
Because of the large length (compared to width and thickness), there is

no strain along the gage length. In the other two directions, the gage
is compressed equally because Barsis et al. treat the epoxy lik. a fluid.
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FIGURE 3.2 COMPARISON OF EXPERIMENTAL DATA ON MANGANIN
WITH ELASTIC-PLASTIC CALCULATIONS

The 1D and 2D strain states refer to the assumed state of strain
in the foil.
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Figure 3-2 clearly shows the importance of gage plasticity on
resistance change. However, at stress levels in excess of 50 kbar, the
one- and two-dimensional strain differences become negligible and the
behavior is similar to hydrostatic response except for an offset.  The
resulets presented in Figure 3.2 have an inherent error because resistance
hysteresis was not taken into account either in the experimental data or
in the analysis. The papers by Lee and Barsis ct al. mention the observa-
tions of resistance hysteresis, but do not report any results. The

results in Figure 3.2 are discussed further in Secrion 3.3.

3.2 ANALYSIS OF THE YTTERBIUM DATA

Yrrerbium gages have been extensively studied under shock loading
by Ginsbherg et 31.21 Resistance change measurements under hydrostatic
loading have been reported by Lilley and Stephens.36 In the work by
Ginsberg et al., the gages were encapsulated in epoxy-fiber glass shecets
and the page packages were then shocked in a variety of matrix materials,
By conducting impact experiments at various velocities, these authors
obtained the resistance change for different stress levels ranging
between 50 MPa and 3 (P2, Their calibration data are shown in Figure 3.3(a).
In addition, these authors have also presented the residual resistance
(upon longitudinal unloading in the matrix) as a function of peak stress,

as shown in Figure 3.3(b).

. 30 . . .
Grady and Ginsbherg have presented an analysis of their resistance-

stress data using the relation

ARi
®RT Tinm * Gin t -4
0

where the matrix notation (m and n range from 1 to 6) is usced for stresses
and strains. Because the current and the electric ficld vectors are
coincident, i values ranging between only 1 and 3 need to be considered.
”im are the piczoresistive coefficients and Gin is a mitrix used to write

the dimensional terms in a compact notation.
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FIGURE 3.3 YTTERBIUM DATA FROM GINSBERG et. al. (Ref. 21)

(a) Resistance change as a function of peak stress.
(b) Residual resistance as a function of peak stress.
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Equation (3.4) is identical to (RZ/RZO - 1) obrained from Equation (2.12)

if n is set equal to zero.

*
Assuming a one-dimensional state of strain in the ytterbium, Ginsberg
and Grady obtained the following results:

(1) Using Equation (3.4) they analyzed resistance change data in

the elastic range under hydrostatic36 and tensile loading to

obtain ﬂll and ﬂlz.

predict the uniaxial strain data at low stresses (elastic region)

These in turn were used to correctly

and provided further confidence in the n-values.

(2) They extended their elastic resistance-stress calculation into
the plastic region by arguing that beyond yielding, the deforma-
tion of Yb is hydrostatic. Thus, hydrostatic data for resistance
change36 can be directly used to extend their theoretical curve
to higher stresses.

(3) They showed good agreement between their theoretical curve
(step 2 above) and shock data by subtracting the measured
residual resistance [Figure 3.3(b)] from the resistance change

at peak stress [Figure 3.3(a)].

Grady and Ginsberg concluded that hydrostatic and shock wave data
in Yb can be explained by assuming a one~dimensional strain stacte, using
a piezoresistivity tensor analysis and subtracting the residual resistance.
Unfortunately, steps 2 and 3 are in error. Step 2 is incorrect because
the procedure used by the authors is valid for resistivity changes and
not resistance changes. The dimensional term is different during hyvdro-

static and uniaxial strain compression, as discussed in Appendix B.

Step 3 is incorrect because not all of the residual resistance is
caused by changes in the stress-free resistivity (referred to as plastic

resistivity change in Section 2). Some residual resistance is expected

These authors argued that the compressibility of the cpoxy-fiber glass
composite was similar to the yrterbium.
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trom purely mechanical hysteresis.  The residual resistance shown in
Figure 3.3(b) is for zcero longitudinal stress.  The other stresses are

not zero and they contribute to the resistance change through Equation
2.12). Appendix C explains how these values can be calceulated.  Here

we simply present the results: For a peak stress of 2 kbar, the residual
resistance due to nonzero stresses and strains contributes 757 to

the residual resistance; at 4 kbar peak stress this contribution drops

to 41%. With increasing stress, the contribution of purely mechanical

hysteresis to resistance change decreases and the change in stress-{rece
resistivity becomes more imporrant. This is because the residual stresses

are lTimited by the magnitude of the vield stress.

We have reanalyzed the data of Ginsberg et al. using Equation (2.12)
in a4 manner similar to that used for the Manganin data in the last sub-
section. The following procedure was used

(1)  The resistance change data under hvdrostatic pressur036 were

changed to the resistivity data using the following fit to the

37
pressure-volume data on Yb.

7
P = 146.65 11 + 122.05 i~ (3.9)
*
where o = D/D0 - 1 and P is in kbar
(2) The resistivitv-pressure data were used to obtain o« (P)
. o -4 .
o= = 0.02 - 7.24 x10 P (3.6)
where we have assumed B = 0. TFor Yb, the choice of ¢ = 0 is
supported by the values of = and T reported by Grady and

10 ‘11 12
Ginsberg. (Note, their analysis is valid in the clastic

range.) Whether this approximation is valid for higher
stresses is not known.
(3) Using «(P), £ =0, and n = 0 in Equation (2.12), we can

calculate the resistance change provided the stresses and
N
strains are known.

*

P is positive in compression.

The use of 1 = 0 in determining the theoretical value is reasonable
since we are going to approximately correct for this in the experimental
data.
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Figure 3.4 shows the calculated points of K versus 7 by assuming
one and two-dimensional strains in the ytterbium. The pressure-volume
relation used is given by Equation (3.5), and Y (the yield in simple 4
tension) was taken to be 0.6 kbar. The yield limits for one-and two-
dimensional strain states, corresponding to Yo, can be calculated from 1

Appendix A. Figure 3.4 also shows the peak resistance change, peak

minus the total residual change (procedure used in Ref. 30), and the peak
minus the residual change consistent with assumptions of one-dimensional
strain and an elastic-perfectly plastic solid.* The difference in these
latter two curves is due to the contribution of mechanical hysteresis;
the relative magnitude of this contribution decreases with increasing
stress. At low stresses, the one-~dimensional strain calculation gives a
better fit to the data; at higher stresses, the two-dimensional strain
calculation gives a better fit to the data. At very high stresses, the

state of strain becomes less important.

3.3 Discussion

The analyses presented show that the theoretical model outlined in
Section 2 is necessary for understanding the shock response of piezoresis-
tance gages and for attempting to reconcile these data with data from
other loading conditions. The importance of gage plasticity in explain-
ing the nonlinearities in the experimental data is quite evident from the
comparisons between theory and experiment. The analysis of the vtterbium
data shows the difficulty in correctly accounting for the resistance

hysteresis.

A key aspect of the comparison between theory and experiment is a
knowledge of the stresses and strains in the gage itself. The differences
in the results for the assumed one-and two-dimensional strains are clearly
seen for low and moderate stresses. Because these differences are dircectly
related to gage plasticity, they are less important at very high stresses.

The choice of one-dimensional and two-dimensional strains in the analvsis

Rigorously, even this procedure is incorrect because the subtracted
amount represents the plastic contribution upon longitudinal unloading
and not at the peak.
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is governed, in part, by the fact that these states are easy to analyze.
The exact state of strain in the gage is difficult to determine. Further-
more, in all of the analyses it was assumed that the normal stress

in the matrix was identical to the normal stress in the gage. Although
this assumption appears reasonable (if the gage is envisioned as a

thin planar sheet), it has not been rigorously demonstrated. We

speculate that violation of this assumption may explain, in part, the

differences between Lee's data18 and the results of Barsis et 31.17

The cylindrical cross section of the wire gage used in Lee's work is
expected to be a larger perturbation to the matrix stresses than the

foil gage. Earlier work by Keough and Wong on Manganin wires and
foils showed that wire response in contrast to foil response was more
. . 15 . . :
influenced by the matrix response. Section 5 discusses the question

of gage-matrix interaction in more detail.

The analyses presented provide insight into how these gages
work and how they can be used in an empirical manner for uniaxial
strain in the matrix. If the normal stress in the gage and the matrix
is the same, then the gage plasticity restricts the magnitude of the
other stresses for a given strain state. The onset of the plastic
response and the relationship between the various stresses is determined

by the strain state. The strain state, in turn, depends on the form of

the foil grid and the material surrounding it.

The continuity of normal stress can be assured by using a thin
foil* (see Section 5 for rigorous proof), and the strain states can be
kept approximately identical in all cases by choosing a particular
grid pattern and surrounding it by a similar epoxy resin in each case.
Such a gage (or gage package) can then be calibrated and used in an
empirical manner (Eq. 1.1) for shock wave uniaxial strain experiments.
Irrespective of the matrix material, the gage response will then be
governed by only one quantity--normal stress in the matrix. The litera-
ture, shows that the gages are generally used in this manner. Because

of differences in gage material and gage fabrication, different

*
The use of wire gages should be minimized or eliminated.
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investigators have provided calibration data for their particular gage.

Selection of one grid pattern and a well-characterized gage material would
be highly desirable because it would eliminate the need for repeated

calibration studies.

We have not discussed gage hysteresis because it is expected to
be reproducible, since the gage response is governed by the matrix
normal stress. For using the gage only in uniaxial strain experiments,
the empirical procedure used by Vantine et al.,32 to account for

hysteresis may be satisfactory.

The above remarks apply only to the use of piezoresistance foil
gages in shock wave uniaxial strain experiments, If these gages arc
to be used in more general loading situations, then their behavier needs
to be examined for those particular situations. The response to more
general loading conditions cannot be directly extrapolated from shock

wave uniaxial strain data. This issue is considered in Sections 5 and 6.
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Section 4

EXPERIMENTS ON PIEZORESISTANCE FOIL GAGES

The experiments were designed to determine the effect of well-
defined changes in mechanical loading on the gage response. The objectives
of the experiments were to: (1) determine the effect of stress rotation
in the matrix on gage response, (2) compare stress-resistance data in a
truly uniaxial strain geometry with conventionally used foil geometry,
and (3) determine sensitivity to shear deformation. These experiments
provide self-consistent comparisons and are not intended to provide

calibration data.

Ytterbium was chosen as the piezoresistance material because it
exhibits a large change in resistance at low stresses, thereby increasing
the measurement accuracy. There also exist considerable piezoresistance
and mechanical data for comparison with our experimental and analytic
results.* Partially offsetting these positive aspects, however, is the
batch-to-batch variability in material texture and resistivity. As noted
earlier, Yb foils are not as reproducible as Manganin foils. We felt we
could eliminate this problem by comparing results from gages constructed
from uniform regions of one foil. We were not entirely successful, as

indicated by the results in this section.

In the impact experiments, the piezoresistance gage response is
related to the stress state in the surrounding matrix. Hence, it is
important that the matrix material be well characterized for loading
conditions of interest. Furthermore, the matrix material should permit
a good bond with the gage; that is, the measurements should nci be perturbed
by intermediate layers of dissimilar material. To satisfy these requirements.
we chose Polymethyl Methacrylate (PMMA) as the matrix material. The work

by Barker and Hollenbach has provided extensive, accurate uniaxial strain

*
We have used Yb foils from the same supplicer, and with s?wilnr material
preparation, as that used in the work of Ginsberg et al, <
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38 . .
data on PMMA. More recently, the compression and shear wave studies

39 . . .
by Gupta have provided a complete determination of the stress-tensor
in PMMA under uniaxial strain loading. The knowledge of the complete
stress tensor is needed for an analysis of the results, particularly for

the experiments in Section 4.1.

In all of our experiments, the gages were embedded in the PMMA. The
general technique consisted of grooving the size of the gages and bonding
the gage by a thin layer of epoxy (Hysol 815, which closely matches PMMA).
The PMMA surface containing the gage was lapped to ensure that the
specimen and the gage surface were flush. PMMA blocks were bonded to
these surfaces using very thin Hysol bonds. Specific configurations
for each experimental type are described in the following subsections.

The experiments in 4.1 and 4.2 were conducted with the SRI 10-cm—diameter
gas-gun.AO The shear loading experiments in 4.3 were conducted with the

6.35-cm-diameter inclined impact facility.41

4.1 ROTATION OF MATRIX STRESSES

Figure 4.1(a) shows the gage emplacement for stress measurements.
Gages denoted by 'l' have the configuration that is normally used in
shock wave experiments. For these gages the direction of shock propa-
gation is normal to the major surface of the foil. Gages denoted as
'2' are identical to the '1' gages, but are rotated 90° with respect
to the shock propagation direction. Thus, to an observer, in the gage
coordinate system, the matrix stresses for the two sets of gages appear
to have been rotated. By comparing the output .rom the two sets of
gages, we can determine the effect of stress rotation on the gage

response.

An important aspect of this experiment involves the feasibility

*
of measuring lateral stresses in shock wave experiments. 1f the gage

*
An important limitation in existing shock wave uniaxial strain data is the

inability to determine the lateral stresses. This limitation is caused by
the absence of experimental methods to measure lateral stresses and by the
absence of lateral stress terms in the conservation equations describing
uniaxial strain flow.*2 Shock wave results are completely described by
the longitudinal stress-=volume-energy (ox—v—E) relation.
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FIGURE 4.1

I

t Shock Direction
MA-8324-11

{a)

MA-8324-12
(b)
EXPERIMENTAL ASSEMBLY FOR STRESS MEASUREMENTS

(a) Schematic view of unassembled blocks showing the four gages.
(b} Assembled target.
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responds only to the stress component normal to its major surface, then
gages denoted as '2' should measure the lateral stress in the matrix.

We point out that the idea of using piezoresistance gages to measure
stresses other than the longitudinal stress is not new; the first attempts,
43

using Manganin wire gages, were those of Bernstein ot al [t is not

possible to analyze each experiment here in detail, but some general

, PP . . 43~45 ,
observations and difficulties with the past work are summiarized bhelow.

The use of wire gages is not appropriate because a wire clement
appears identical to the stress wave for both longitudinal and lateral
stresses unless it is contained in a planar slab of another material.
In the contained situation, the in-situ nature of the measurements is
compromised and two~dimensional wave c¢ffects need to be examined. Two

? used Manganin, which gives appreciable

of the previous studics4
signals, only at high stresses. At high stresses, the matrix material
is difficult to characterize because of dynamic yield and tailure. This
difficulty, coupled with the complex nature of the gage package, does
not permit a clear interpretation of the results. Stubbs cot ul.AQ

examined the use of carbon gages to measure lateral stresses at low
compressive stresses (V10 kbar).  They corrected many of the problems
related to encapsulation techniques for lateral stress measurements and
qualitatively demonstrated the potential {or measuring lateral stresses.
Quantitative evaluation of their work is difficult because of a lack of
independent stress determination in the matrix material, the uncertainties
in carbon gage calibration, and the difficulty in understanding the true
response of the gage because of the many layers of encapsulation of
materials in the gage package. The lack of an independent stress
determination in the matrix is particularly important becausce without

such a determination it is difficult to establish the validity of using

a piezoresistance stress gage for lateral stress measurements.  Proevious
studies have not always appreciated this point and have reported lateral
stress measurements without appropriate demonstration of gage catibration,
In summary, given the complex nature of piezoresistance measurcements and
the complexitics indicated above, previous studies have not unambiguously
demonstrated the use of picezoresistance gages for quantitative measurcments

of lateral stresses,
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In our cxperiments we have avoided the above-cited difficulties by
embedding gages directly in PMMA, Specifically, the experimental procedure
was as follows. PMMA blocks, shown in Figure 1(a), were accurately
machined to give flat and parallel surfaces (tolerances x0.0025 c¢m).

The blocks were grooved to the dimensions (length = 25.4 mm, width = 2 mm,
depth = 0.05 mm) required for emplacing Yb gages. The gages were set in
the grooves using Eastman 910 adhesive at a few points and the very small
clearance around the gages was filled with a material that matches the
mechanical impedance of PMMA. After the gages were set in the PMMA blocks,
the faces with the gages were carefully lapped to ensure that all gages
were flush with the PMMA surface. The blocks were then bonded together
using the filler material. An assembled target with the 4 four—terminal
gages is shown in Figure 4.1(b). The use of a rectangular foil without
encapsulating layers is in contrast to previous studies using encapsulated

grids.

Two experimental assemblies were constructed with two gages of cach
type in cach experiment. In the first experiment, the filler material
was PMMA powder dissolved in cthylene dichloride solution.!’6 The ethylene
dichloride was also used for bonding the blocks. In the sccond experiment,
the filler and bonding material was Hysol 2038 epoxy resin.  The change
of the bonding material in the second experiment merely reflects oxperi-
mental convenience and is not expected to influence the conclusions drawn

from this work.

Projectile velocities were chosen to give a compressive stress
amplitude of 0.5 GPa in these experiments. At this stress level woe have
independently established the magnitude of lateral (or deviator) stresses
for uniaxial strain in the PMMA matrix. Resistance change methods were
made using the usual four-probe measurements.  In addition, impact tilt
and projectile velocities were monitored. The resistance changes from the
two experiments are shown in Figures 4.2(a) and 4.2(b) respectively and

the results, summarized in Table 1, arce discussed next.,
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FIGURE 4.2 RESISTANCE CHANGE DATA FROM THE TWO EXPERIMENTS

The data have been normalized to wave arrival times.
The higher amplitudes are from the gages measuring longitudinal stresses,
while the lower amplitudes are from the gages measuring lateral stresses.
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The resistance change data from the first experiment (Figure 4.2a)
showed considerable scatter. However, the differences between the two
sets of gages are quite marked. To reduce this scatter, we obtained the
four gages for the sccond experiment from a small area of one foil. The
results of the second experiment (Figure 4.2b) indeed showed less scatter
and confirmed the results of the first experiment. Table 4.1 gives the
ratio of lateral and longitudinal stresses in the matrix and the measured
resistance change ratio from the two sets of gages. Within experimental
scatter these values ugree,* suggesting that resistance changes are governed
by the stress component normal to the major surface of the foil. More

work needs to be done to improve experimental precision and to extend the

results to other stress amplitudes.

Although the resistance change ratio measured here agrees with the
expected stress ratio, it is difficult to reconcile this result with the
calibration data for Yb shown in Figure 3.3. Those data show a nonlinear
resistance change above 0.1 GPa. From the measured resistance change
ratios shown in Table 4.1, we obtain stress ratios ranging between
0.71-0.73 using the calibration data of Ginsberg et al.+ These values
are higher by about 20% in comparison with the calculated values. The
point to be made here is that the calibration data for one orientation
cannot be directly used for gage measurements along a different orientation;
separate calibration data are required for each orientation. Extending
this result, we can see the potential for cven a larger error when gage

data from one loading condition are used for a different loading condition.

In conclusion, the results of the matrix stress rotation experiments
show that the resistance change ratio for the two orientation is in
reasonable agreement with the ratio of stresses normal to the major foil

surfaces. However, separate calibration curves are needed for the

*
The average measured values are higher than the calculated values.

Because our gage configuration and construction is different from that
of Ginsherg et al., the use of their data cannot be justified for an
absolute calibration. However, their data are suitable for comparisons.
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two orientations. More experiments of the type presented here are required
to provide confirmation of present results at other stress levels and to
examine the development of a stress gage for measuring lateral stresses

in uniaxial strain experiments.

17

4.2 EFFECT OF STRAIN STATE ON FOIL RESPONSE

The precise form of the strain state in a foil has generally not
been considered in shock calibration experiments. However, a uniaxial
strain state is often assumed21 because: (1) the width-to-thickness
ratio of the foil is large, and (2) the compressibility difference
between the foil (particularly Yb) and the surrounding cpoxy is small.
To determine the validity of the one-dimensional strain approximation
and to measure the true one-dimensional strain respounse, we conducted
shock experiments on piezoresistance foils of several different widths.
Because the lateral boundaries influence the final strain state in the
foil, a sufficiently wide foil will initially be in uniaxial strain
compression, whereas a narrow foil will rapidly be in biaxial strain
compression., We can determine the effect of foil strain state by
comparing the time-resolved piczoresistance response of both foils to

a rapidly rising stress pulse in the matrix material,

The experimental configuration of these experiments is shown in
Figure 4.3. Three foils, each of 0.005 cm thickness, were cut in four
terminal arrays, as shown, from one large piecce of foil. The widths of
the gages were 0.05, 0.32, and 2.54 cm, respectively. Each was bonded
with Hysol 815 epoxy in milled grooves and the specimen assembly was
completed as described previously to ensurc good lateral (edge) contact

to the PMMA.

Resistance measurements were made by pulsing cach {oil with constant
currents of equal current density (A/cmz) in cach foil and obscrving the
time-resolved voltage developed across a section of the foil. Currents of
~100 A were used in the 2.5-cm foil to obtain adequate signals. Stress
amplitudes of ~0.2 GPa and 0.5 GPa in the PMMA matrix were chosen to

optimize the experimental conditions.
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Ytterbium Foils
In Milled Slots
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Direction
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FIGURE 4.3 UNIAXIAL AND BIAXIAL STRAIN CONFIGURATIONS

Contacts to Ytterbium foils are 0.005 cm thick copper foils
soldered to vapor deposited copper tabs on Ytterbium.




.

Initial and average resistance changes obtained in three experiments

§ are shown in Table 4.2, It can be seen that the ordering of response is
f% not consistent; that is, changes in resistance do not correlate with width.
B In two of the experiments (0.2 and 0.55 GPa), the narrow foils responded
kA essentially the same. In the other (0.48 GPa experiment), they differed

substantially (~24%). With the exception of the one value for the 2.54-cm

foil at 0.55 GPa, all points are considerably lower than the data of

Ginsberg et. al.21

The time response results are shown in Figures 4.4, 4.5, and 4.6.
Here again the results are inconsistent. At the lower stress level, 0.2
GPa, considerable noise obscures the data; however, the average values
of the narrow foils are essentially the same. (Data for the 2.54-cm foil
were not obtained because of equipment malfunction.) In the 0.48-GPa
experiment, all foils exhibited no change with time (within the precision
of measurement, ~27%). However, in the 0.55-GPa experiment (Fig. 4.6),

the widest foil showed a decrease of ~12% with time.

A comparison of our shock compression data with those of Ginsberg

21 | . . R .
et al, is shown in Figure 4.7. Our data indicate considerably lower
values of resistance change for a given stress in the matrix than those

in Reference 21. We have not been able to account for this difference.
We conclude from these experiments that:

(1) The values measured for the narrowest foils in our work
are consistently lower than those for similar foils in
previous work.2l These differences are beyond the experi-
mental scatter and may be due to differences in strain
states and/or differences in foil material.

(2) We cannot detect an influence of houndaries for Ytterbium
in PMMA. It should be noted that these materials do not
differ substantially in compressibility. A larger
difference might be obtained with a greater mismatch.
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FIGURE 4.4 RESISTANCE CHANGE VERSUS TIME FOR YTTERBIUM
FOILS (Stress of 0.2 GPa in PMMA)

The foil widths are indicated in the figure.
Other dimensions were the same.
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FIGURE 4.5 RESISTANCE CHANGES VERSUS TIME FOR YTTERBIUM
FOILS (Stress of 0.48 GPa in PMMA)

The foil widths are indicated in the figure.
Other dimensions were the same.
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FIGURE 46 RESISTANCE CHANGES VERSUS TIME FOR YTTERBIUM
FOILS (Stress of 0.556 GPa in PMMA)

The foil widths are indicated in the figure.
Other dimensions were the same.
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4.3 FEFFECTS OF SHEAR LOADING

In field tests, shear deformations may be induced in piczoresistance
gages. These deformations can result from non~normal incidence of stress
waves or from shear waves in the test medium. An examination of the
piczoresistive theory presented in Section 2.1 shows that shear stresses
should not induce a change in the resistivity. This result is duce to the
form of the piezoresistive matrix and because of coincident current and
celectric field vectors (see discussion in Section 2.3). However, the
presence of shear stresses in the foil can alter the compressive stresses

due to plasticity and can, therefore, change the resistance measurements.

To examine the above effect due to shear deformation, we conducted
combined compression and shear experiments on ytterbium foils embedded
in PMMA. The gage emplacement is similar to that described carlier in
this section. Gage foils were aligned so that the applied shear stresses

were along the gage length and the page width, as shown in Figure 4.8.

The technique for producing combined compression and shear loading
is described in the paper by Gupta el n1.47 and is shown in Figure 4.9.
Parallel, inclined plates are impacted to produce compression and shear
wiaves in the specimen.  Because of wave separation in the specimen interior
(due to wave velocity differences), the response of the piezoresistance

wages can be obtained for each wave.

The response of the PMMA under combined compression and shear load-
ing, using particle velocity gages, has been determined independently by
Guptn.}g We have, however, conducted one experiment using particle
velocity gages to determine the shear stress across the interface and the
precise wave arrival times for the experimental configuration ot interest
to the present work. This experiment was similar to the piczoresistanc
target assembly shown in Figure 4.8, except that a particle-velocity

gage was substituted tor the piczoresistance gages,




Shear

MP-8324-18

FIGURE 48 FOIL CONFIGURATION IN SHEAR LOADING EXPERIMENTS
(View from impact side).

For gages 2 and 3, the direction of shear is along the length;
for gages 1 and 4, the direction of shear is along the width.
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FIGURE 4.9 SCHEMATIC VIEW OF EXPERIMENTAL TECHNIQUE TO PRODUCE
COMPRESSION AND SHEAR WAVES

The X; refers to the laboratory system; X, refers to the coordinate
system fixed on the impact plates.




The data from this particle-velocity gage experiment are shown in

Figure 4.10. These consist of a voltage-time profile at the impact surface

(PV1) and in the specimen interior (PV2) at a plane equivalent to the Yb ol

foil gage experiments (~0.51 cm from the impact surface). The experi-
[ mental setup was designed to provide signals only from the shear wave.
' However, the errors in the magnetic field alignment and finite impact I 3
tilt cause a small signal from the compression wave (the small precursor
in the PVZ profile). Because there is no separation of waves at the
impact surface, the impact surface gage (PV1l) shows no such precursor.

An analysis of these data gives the following results

Wave separation = 1.47 us
*
Compression stress = 2.7 kbar

*
Shear stress = (.34 kbar.

These results show that a considerable shear stress is transmitted

through the specimen interior.

Results from the piezoresistance gage experiments are shown in
Figure 4.11 and 4.12. As can be seen, there is a considerable amount of
scatter for a constant stress input. The results in Figure 4.11, however,
show a discernable change upon shear wave arrival. The results in
Figure 4.12 are not as clear. Average resistance values for intervals ?
corresponding to the compression wave only (<1.47 ms) and to combined
compression and shear (1.47 to 3.1 us) are shown in Table 4.3. The
average increase in the resistance change is ~107 in the first experiment
and ~27% in the second. The first value is larger than the experimental
uncertainty, whereas the second value is well within experimental

uncertainty.

The results of our experiments indicate an effect of shear stress

on the gage response. Unfortunately, because of the lack of reproducibility

in the data, the conclusions cannot be considered definitive.

*Thu compression stress was calculated using the jump conditions and by

writing the particle velocity as one-half the longitudinal component of the }
projectile velocity. The shear stress was also obtained by using the jump

conditions. The measured shear wave and particle velocities were used.
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FIGURE 4.12 RESPONSE OF Yb GAGES TO COMBINED COMPRESSION AND SHEAR LOADING
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4.4  SUMMARY

: The experiments described show that the mechanical variables considered

' in this work influence the gage response. Unfortunately, the lack of
reproducibility in the results described in Sections 4.2 and 4.3 does

not permit firm conclusions regarding the effect of strain states and

oA - e

shear deformation, More work is needed to clarify thesc effects.

e

The experimental results from matrix stress rotation show that the
gage responds primarily to the stress normal to its major surface.

Furthermore, the calibration for gages in one orientation is not

applicable to the other orientation. This raises the question: How can
we explain or model the response of the gages in the two orientations?
In the last section we assumed continuity of normal stress and a
particular strain state to derive the resistance change of gages

oriented in the usual orientation (designed to measure longitudinal

C O T A M. -

: stresses)., Similar assumptions cannot be used for the other orientation
(designed to measure lateral stress), because it is difficult to determine
the stresses and strains in the foil. The answer to the above question is

obtained by modeling the gage as an inclusion in the matrix, as described

in Section 5.




SECTION 5

DETERMINATION OF GAGE RESPONSE

In the previous sections we have shown that determination of the
resistance change of a gage element requires the knowledge of stresses
and strains in the gage. The analyses in Section 3 were performed by
assuming one stress component in the gage and by assuming a particular
strain state in the gage. Although these assumptions are plausible,
they are not rigorously justified. Also, they do not provide insight
for a different loading situation, such as rotation of matrix stresses,
as described in Section 4.1. Here we take a different approach: we
determine the gage stresses and strains (hence resistance) by modeling
the gage as an inclusion in a matrix and then solving the corresponding

boundary value problem.

The analytic solutions presented are based on the Eshelby solution
for an ellipsoidal elastic inclusion in an elastic matrix.48 We have
extended this solution to an elastic-plastic inclusion in an elastic
matrix because the elastic inclusion solution is shown to be incorrect.
Solutions for both loading and unloading have been obtained. Effects
of gage aspect ratio on resistance change have also been examined. Before
presenting the solutions, we discuss the applicability of the analysis teo

the experimental situation.

The experimental results given in Section 4.1 are used to check our
theoretical analysis. In these experiments, the principal stresses in
the matrix had different orientations with respect to the gage. We will,

therefore, determine how well the present analysis can simulate the measured
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resistance change ratios for the two different orientations. This simu-
lation is a better test of the theory than an absolute prediction for a
single orientation because the constants (u, [, and 1n in Section 2) are
not very accurately known. By comparing the ratios from two different
orientations, the accuracy requirements on the constants are somewhat
reduced.  The use of experiments in Section 4.1 also ensures that the
matrix is elastic (although the inclusion may be plastic) as required

by our theoretical analysis.

The theoretical analysis ignores any dvnamic effects such as scatter-
ing of the stress wave by the inclusion. We have assumed that the gage
is always in equilibrium with its surroundings. We are, therefore, solving

a static equilibrium problem for an imposed deformation in the matrix.

5.1 ELASTIC INCLUSION SOLUTION USING THE ESHELBY ’I’ECHNIQUE,c

The solution to the general problem of the stress field determination
due to an elastic ellipsoidal inclusion in an elastic matrix was described
48

by Eshelby in 1957. A brief discussion of the Eshelby technique and its

application to our experimental situation is given below.

Figure 5.1 shows an inclusion, bounded by a surface §, in an infinite
matrix. We wish to determine the stresses and strains in and around the
inclusion for a matrix strain imposed far away from the inclusion. Two
basic assumptions in Eshelby's work are: (1) linear elastic response for
the matrix and the inclusion, and (2) continuity of tractions and displace-
ments across the matrix—inclusion boundary; that is, the inclusion and
matrix are welded across the surface §. Eshelby's solution procedure is
based on an application of the Green's function in an clastic medium.

The solution consists of two parts and includes the steps indicated next.

%*
This work was done in collaboration with Prof. G. E. Duvall.
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FIGURE 5.1 A SCHEMATIC VIEW OF AN INCLUSION BOUNDED BY A SURFACE
S IN A MATRIX

The traction vector normal to the surface is shown.




First, the transformation problem is solved. In this problem the

"inclusion' bounded by S is homogenous; that is, it is the same material

as the matrix., The intent is to determine the elastic state of the matrix

¢

L

¥ and the homogenous  inclusion when only the inclusion is subjected to an
L] . . - . . .

. arbitrary homogenous strain.  The constraint provided by the remainder

12 . . I3

; of the matrix gives rise to the stresses.  In arriving at the solution

of this problem, Eshelby considered the following hypothetical steps.

! Make a cut along the boundary surface '$' and impose the stress-free

. T . . . . .
homogenous strain ¢+ on the inclusion. The region bounded by S can no

.
longer fit in the matrix and surface tractions T are needed to restore

- -

the strained inclusion to its original shape and size

5

P

13 > T o>

‘ SR (5.1
i .

H where 01 = H o7

:

H represents the elastic constants and & defines the normal to the
surface S. If the inclusion (strain-free but not stress-free) is now
put into the matrix (stress—f{ree and strain-free) and welded across the
surface 8§, then there is a body force of magnitude T spread over the
surtace S, To annul this force, impose a distribution -T = + nn° N on
the surface 8. This force produces a displacement ficeld " (;). The
stresses and strains in the matrix and inclusion can then be written

using the clastic constants () and G).

. du i
I R VEA DR
i) ij 1),\;1 ax
Matrix (H5.2)
i = )l_‘ =4t & + 2¢6 (_‘
ij ij mm o ij ij
- (‘
ij ]
Inclusion (5. 3)
. T
! =0, =5,
ij ij i}

% D
Note, - is a tunction ol position,
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The inclusion stress term takes into account the tractions that were
required to bring the inclusion -back to the original size and shape.

c . . . . .
Knowledge of u; is the main step in determining the stresses and strains.

Using the CGreen's function for an elastic medium, Eshelby derived the
displacement field due to the forces OT- ﬁ applied over the surface §,

. T T
in terms of 0 and ¢+, as follows:

. %k dv .
C - ik dv 3
ug (X Lenu(i-v) J 2 fijk S
T
. ik dv ;
g (1=v) J .2 Bk 0 (5.4)
= - \ - + 3¢ R
where fijk (1=-2v) (6ij2k + Aiij) 6jk2i BQLQij
= - - 8 . Q
83k (1-2v) (aijﬂk + cikzj djkxi) 3000

>
r and £ = (Rl, 22, QB) are the length and direction of a line drawn from
dV to the point of interest, and v is Poisson's ratio. For an cllipsoidal

inclusion, Eshelby showed that the above equations can be rewritten as

c T

¢ =

13 Sijke fke

where §, depends only on the Poisson's ratio of the matrix and the

iik®

* T . . A . :
shape of the ellipsoid. Because ;k9 is uniform by definition, it follows

c ., , A . .
that ¢, , is also uniform within the inclusion.
1]
The solution of the transformation problem is used to solve the actual
problem of interest: The inclusion and the matrix have different properties
- AL . .
and an external strain ¢ is imposed at infinity. To solve this problem,
replace the actual inhomogenous inclusion by an equivalent homogcenous
inclusion. The solution to this equivalent homogenous inclusion problem
: A . . A .
under external strain ¢+ 1is obtained by superposing + on the strain

state of the inclusion and the matrix in the transformation problom.

L .
Although Equation (5.5) appears to be simple in form, the calculation of
S is quite cumbersome.




Eadcdeaias Lo Y Bieten iy o o L 1

Thus, the stresses in the 'cquivalent inclusion' are

gine. _ H e (EC " hA _ z7'1) (5.6)

In the actual inclusion (elastic constants H”), the strains

. A .
v+ ¢ give rise to a stress

o =h e+t (5.7)

inc. inh. . . . .
If o =0 , then the equivalence with the homogenous inclusion

is complete. We, therefore, write

H o ° + gA) =He. "+ rA - tT) (5.8)
where
C T

Equations (5.5) and (5.8) can be solved for tT and ¢ in terms of »A.

For example, eliminating ¢ between (5.5) and (5.8) gives

= (H - }g") . gA (5.9

- T
[(H - H) » S+ H] +«
Solution of the simultaneous equations represented by Equation (5.9)
T . . . : N ;
give + , which is then used to obtain ¢ from Equation (5.5). Stresses
in the matrix and the inhomogenous inclusion are determined from Equations
(5.2) and (5.7), respectively. (In using Equation (5.2) it is nccessary

G

A
to add 7 to + ).

In the experiments we are simulating, the gages were a rectangular
parallel piped with dimensions: 2.5 em by 0.2 ¢m by 0.005 em.  We make

the following assumptions:

(1) For the times of interest, the gage length can
be taken as infinite.
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(2) The rectangular cross section 0.2 em by 0.005 ¢m can be
replaced by an c¢lliptical cross section such that the
arcea of the e¢llipse is the same as the rectangle
(0.2 cm*by 0.005 ¢m) and the axes have a ratio of
40 to 1.

(3) Nonlinearities in elastic constants are ignored.

Because of the infinite length, we have a plane strain problem and

the strain fields are as follows

A A A
L= (Kl, €y o)
e ¢ (y;, i‘z 0)
T T T T .
= (1.1, tys t3) (5.10)

Note that + can have all three components non-zero in the theoretical

. + . . . ,
formulation. The stresses in the inclusion can be written as

- 9 G ¢ A ¢ A

0 (‘1+°(l)(>]+A1)+Al (22+\2)

. A . . A

0, = )\l(yi D F O 2 <,1)(.\‘2 + i)
5, = ,\l(y‘l'+}’;+k‘;+}’2‘) .10

where Xl and Gl are elastic constants for the inclusion.

In our experiments we are considering two cases:

Case T:  The applied strain is one dimensional and along
the gage thickness direction: £y {The convention for the
axes was given in Section 2.3).
Case 11: The applied strain is one dimensional and along

. . . A
the gape width direction: ar

The semi-major and semi-minor axes arce then 0,115 cm oand 0.00287 cm,
respectively.

B T

is a fitting parameter that matches the stresses in the
actual and the equivalent inclusion.
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*
The resistance change, ignoring the changes in stress-free resistivity,

can then be written as

ARS A ¢ :
ase 2= + ; -, - -t 12
Case I Ro ”12 (ol 02) +—ill] 03 ) ' ) (5.12)
H AR
H 3 A ¢ c
H ase c— = - + - - — . -
: Case I1 RO 10 (01 <)2) + Ty Oy ] £l ty (5.13)

We have used ”ij instead of a,B (see Eq. 2.7). The values for these
constants were taken from the work of Grady and Ginsberg on Ytterbium
30
gages.
The procedure for evaluating AR/RO in Equations (5.12) and (5.13) is

A, . . .
as follows. ¢ 1is determined from experimental data on the matrix

s

, + . . . T .
material. Equation (5.9) is used to evaluate : , and Equation (5.5)

. ¢ )
is then used to evaluate : . These results are used to cvaluate stresses

. . - . . . . A S
in Equation (5.11). The stresses in conjunction with +° and - pive AR/R).
<~ {

The ratio for the two cases is given as

) e

3 .
g o B 2.1 (5.14)
o [T 0 i
1 X%
i where we used the following elastic constants
{ Yb: K = 14.8 GPa; G = 7.25 GPa
: PMMA: K = 6.02 GPA; G = 2.25 GPa.
: This is the same as assuming 1 = 0 in Equation (2.12).

-

"[‘hv matrix material (PMMA) has bheen very well characterized under

shock loading. 38

%%
The constants for Yb are taken from Reference 30,0 PMMA constants are
taken from Reference 39 and reflect the moduli appropriate at high
strain rates.
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The above result is clearly in error, because the experimental
measurements give a value of 0.64 + 0.06. Examination of the various
steps in the calculation showed that the large difference in the theory
and experiment could not be ascribed to errors in constants. The main
error was due to the large stresses resulting from the stress concentration
in Case I1I. (The stresses and strains for these calculations are discussed
in the next subsection.) These concentrations are a consequence of the
aspect ratio. Simple buckling calculations showed that clastic buckling
could not occur for our probltem and, thercfore, could not explain our

experimental results.

The difficulty with our stress solution is that it does not account

for gage plasticity. The incorporation of plasticity should dramatically
alter the stresses because the stress differences have to satisfy the
yield condition. The extension of the solution to an clastic-plastic

inclusion is considered in the next subsection.

5.2 MODELING THE GAGE AS AN ELASTIC-PLASTIC INCLUSION

The Eshelby solution can be extended to an elastic=-plastic inclusion,
as descripbed nelow, and the results can then be used to calculate the

resistance change for the two orientations.

In the Eshelby solution for an elastic inclusion, the inhomopenous
inclusion can be replaced by an equivalent homogenous inclusion provided

we satisfy the stress equivalence in Equation (5.8).

The right-hand side is the stress in the cquivalent inclusion and H refers
to the matrix elastic constants. The left~hand side is the stress in the
actual inciusion. For an clastic inclusion, H™ are clastic constants,

In general, however, there is nothing in the theoretical formalism that
restricts the form of the left-hand side provided the stress equivalence
is S.ltisfit‘d.aq\dt‘ can thercfore choose any constitutive relation for the
inclusion. Another way of explaining this result is as follows:  The

strains developed in the actual inclusion arce such that the constitutive
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relation for the inclusion and stress equality with the equivalent

inclusion are simultaneously satisfied. To avoid confusion, we rewrite

Equation (5.8) as

H"~(g‘+i)=§-(e +c ) (5.15)

The tensor H”” no longer represents the elastic constants. Instead, it

relates the stresses and strains of an elastic-plastic body.

The constitutive model used for the gage is the same as that presented
in Section 2.2. The elastic constants for the PMMA and Yb are taken to
be linear with the same values as in the previous calculation. The yield

function for the Yb is a von-Mises yield law expressed as

\’Jz - YO =0 (5.16)

where Yo is taken to be 0.45 kbar. Because of a lack of existing data,
work-hardening is not included. The calculations are carricd out
incrementally in 100 steps to a peak strain of 5.97% (corresponding to
experiments in Section 4.1). The procedure consists of performing an
elastic calculation until the onset of yield.* On yielding, the
increment is further subdivided to accurately obtain the matrix strain
corresponding to yielding. On yielding, the modulus tensor is redefined
and the appropriate stresses are obtained. The procedures during loading
and unloading are similar; that is, each incremental calculation is first

performed elastically and if yielding occurs, it is taken into account.

The results of the resistance change calculation as a function of
matrix strain for the two orientations are shown in Figure 5.2. For

comparison with our experiments, only the peak values are of interest.

*
The total stresses and strains at any instant are obtained by adding
the increments to the previous value.
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FIGURE 5.2 CALCULATED RESISTANCE CHANGE OF Yb GAGES (MODELED AS
ELASTIC-. LASTIC INCLUSIONS) VERSUS MATRIX STRAIN

The response shown in this figure is for gages with major surface normal to

shock propagation direction (I) and major surface paraliel to shock propagation
direction (1I).
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The calculated ratio at peak strain is

AR AR

Ro 1T Ro 1

0.63 (5.17)

This result is in good agreement with the measured resistance change
ratio (0.64 + 0.06). We emphasize that the closeness in the agreement
is fortuitous because the constants are not very well known.* The main
result of this calculation is that by modeling the gage as an elastic-
plastic inclusion, we can predict the resistance change reasonably well

and can, therefore, understand the gage response.

Further discussion of the resistance change calculations (Figure 5.2)
will be presented after an cxamination of stresses and strains in the gage.
Table 5.1 lists the stresses and strains in the inclusion (gage) and in
the matrix (far from the inclusion). For the gage, we have also shown,
in parenthesis, the stresses and strains for the clastic inclusion solution.
In Case I, the stress normal to the major surface of the gage (inclusion)
is equal to the matrix stress in that direction,f with the other stresses
for the plastic case being determined by the yield condition. The gage
strain state, though different from the matrix strain state, is largely
uniaxial (f,z/si1 = 28.3). The strain along the X1 direction is a consequence
of two competing effects: the large aspect ratio of the inclusion that
tends to reduce it, and differences in the mechanical impedance between
the inclusion and the matrix that tend to increase it. The elastic solution
for Case 1 shows an identical normal stress, but the other stresses arce
considerably smaller in comparison to the plastic solution. The inclusion
strains arc¢ also smaller for the elastic case. Thus, the clastic solution

gives a lower /\R/R0 for this orientation.

*
In fact, the individual resistance change values differ by about 107,

-1

[l . . . .

This calculation rigorously proves the assumption that the normal stress
is the same in the gage and the matrix.




Table H. 1

*
STRESSES AND STRAINS IN THE MATRIN AND THE GAGE

Matrix Matrix Gaape Gage
. Stress Strain Stress Strain
Casce Dircetion __‘kbar) oGy (kbar) oGy
[ Xl —2.f>8i 0 -4.61 0.12
(=2.29) (-0.05)
X, ~-5.134 -5.92 -5.138 -3.4
- (=5.37) (=2.17)
t
X3 ~2.68 0 -4.59 0
(-2.22)
[ Xl -5.34 -5.92 -3.54 ~6.07
(~12.24) (~5.55)
X, —2.68# 0 -2.7 4,04
- (=2.73) (1.1)
X3 —2.68i 0 ~2.84 0
(4.133)

*
Tensile stresses and strains are considered positive.  The values in the

parenthesis refer to the elastic inclusion solution discussed in
Subsection 5.1.

B
'These directions refer to the gage: lLength is along X;’ width along XN

. . 1’
and thickness along X, .

The use of nonlincar elastic constants will wive the correct value:
3.05 kbar.
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For Case 1I, the stress normal to the major surface of the inclusion
is again equal to the matrix stress in that direction. The other stresses
(determined by the yield condition) are no longer equal because of the
stress concentration effect due to gage geometry. The strain states for
this case are quite complex, with compression in one direction and tension
along the other. For the elastic solution, the strains are smaller, but
they have the same sign as the plastic solution. The stresses, on the
other hand, are very large due to stress concentration and give rise to
a large resistance change for this orientation. The large stress values
are responsible for the incorrect ratio obtained in Section 5.1. The
development of tensile strains in Case II is an interesting result that

should be examined experimentally.

The above results show that the stresses along the normal to the
foil are equal to the matrix stresses because of the large aspect ratio
(40 to 1) of the foil. The strains, on the cther hand, cannot be pre-
dicted as easily. In the experimental situations considered here (uniaxial
strain in the matrix), the contribution of the strains ? quite small and

the stresses dominate the resistance change. This is not true in general.

The plot shown in Figure 5.2 (resistance change versus strain) is
the plot that would be generated by a series of experiments having
different matrix strains. It is important to note that yielding for
the two orientations occurs at different matrix strains. In the elastic
range, the resistance change for Case 11 is higher than in Case I. This

result is contrary to a simple empirical usage of the gage and needs to

be examined by experiments in the low strain range. The straight line

form of the results is a consequence of ignoring the nonlinear material
properties. On unloading, the usual orientation (Case 1) gives risce to
hysteresis. This hysteresis is purelv due to non-zero stresses and
strains in the gage because changes in stress—free resistivity have not
been considered in our calculation. The unloading for Case II is more
complex and the arrow marks the spot where one of the gage stresses
becomes tensile, The resistance change results below that strain level
are probably not realistic because the foil may separate from the matrix.

“ore work is needed to better understand the solutions for unloading in

[IRCEN O




We can also use this analysis to examine the effect of gage aspect
ratio (width-to-thickness ratio) on the gage response. To comparce the
output of the wire gages with foil gages we performed the calculations
for a circular cross section. The calculations were done for Yb., keeping

all other gage and matrix variables the same as the elliptic cross section.

For the circular inclusion, there is no effect of matrix stress rotation
(as expected), and we obtained a value of (AR/RO) = 0.29. The resistance
change for the elliptic inclusion (Case 1) was 0.32. We can therefore
conclude that the wire gage would show a lower resistance change in

contrast to the foil gage.

The results for Manganin are expected to be similar and should quali-
. . 17 . . .
tatively explain the lower value of Lee's results in comparison with the

. 18 . . .
results of Barsis et al. as discussed in Section 3.1.

5.3 SUMMARY

*

By modeling the gage as an elastic-plastic inclusion and using the
phenomenological model developed in Section 2, we can predict the responsc
of piezoresistance gages. The results from the analysis presented in this

section can be summarized as follows:

L The changes in the gage response to rotations in the stress
components in the matrix were correctly predicted.

L The simple empirical relation used for piezoresistance gage
calibration under shock loading is shown to be a consequence
of the gage plasticity and the gage-matrix interaction.

L The theoretical basis for developing a lateral stress gage
has been presented. Further work needs to be done to under-
stand the unloading response of a gage used for lateral stress
measurements.

L For the experimental situations considered, the total strain
(or dimensional) contribution to resistance change has been
shown to be small.

° The present analysis permits an assessment of the foil aspect
ratio on the gage response.

%
We remind the reader that the assumption of displacement continuity at

the inclusion-matrix boundary is inherent in the analysis. Although
this assumption is quite restrictive, the state of matrix strain coupled
with gage plasticity reduces its importance for our work.




SECTION 6

DISCUSS1ON AND RECOMMENDATTIONS

The analysis presented in the Section 5 completes our solution

to the direct problem; that is, we have successfully modeled the gage
response to an imposed matrix deformation. The results show that the
important variables in understanding the gage response are gage plasti-
city and the gage-matrix interaction. This latter variable takes into
account matrix strain and gage shape. In this section we first discuss
the various assumptions made in our gage-matrix interaction analysis.
Next, we examine the implications of our results to the measurement of

stress in a complex loading situration, namely, divergent flow.

We assumed the gage length to be infinite in our calculations.
This assumption is not necessary for solving the problem and is made to
facilitate the calculations (determination of S in Eq. 5.5.). The
assumption is reasonable given the length-to-thickness ratio (500 to 1)
and the times of interest in shock wave measurements. For a truly static

problem, the effect of finite length needs to be examined.

The gage cross section is taken to be elliptical in our calculations.
There are two potential difficulties with this assumption: (1) Initially,
the gage has a rectangular cross section, and (2) the effect of the stress
wave on the gage shape is not considered. Replacing the rectangular
cross section by an elliptic cross section seemed reasonable for the large
aspect ratio of our work (40 to 1). To rigorously examine the validity
of this assumption, finite clement calculations* were performed with an
elliptical and a rectangular cross section. Except for the edges along

the larger dimension, the stresses in the inclusion were the same for

= .
These were performed by Dr. L. Schwer of SRI using the NONSAP code. 0
1

-

There were 160 elements along the larger dimension and only the 5
elements on each end showed significant derivations.
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the two cases. The results of these calculations justified our use of
the elliptical inclusion. The distortion at the edges is not considered

important because of the stress wave effect discussed below.

Using a static boundary value analysis for a dynamic problem
ignores the distortion to the gage shape due to the incident shock WHVC.*
Hence, the exact shape of the gage afrer the shock wave has traversed
over the specimen is not known. Although we do not believe this effect
would make a large contribution, we can neither prove or justify this

statement. Future work should attempr to determine the contribution

from gage distorcion.

The results from our work show the difficulty in inverting gage
data (a scalar measurement) from an arbitrary loading situation. In
fact, it is reasonable to say that the resistance change data, without
knowledge of some other parameters, would be impossible to analyze. This
then brings up the question: How can piezoresistance gages be used in
more complex situations, such as diverent loading? To make such meas-
urements, two aspects of the problem must be addressed: Determination
of the gage constants (it,B,n) indicated in Sectfon 2, and examination

of the gage package-matrix interaction.

A determination of the gage constants is necessary to interpret the
gage data. If the constants are known, then the gage calibration is
more general and we do not have the difficulties encountered in analyzing
the data of Section 4.1. This determination requires gage measurements
for several strain paths in the matrix. [If the stresses are low enough,
then the gage responds clastically, and this permits determination of
@ and B. Plastic deformation of the gage and relating the plastic work
to change in the stress-free resistivity can provide . This latrer
measurement, though not simple, needs to be attempted for at least one
gare type to complete our understanding of piezoresistance gapes.

*
This was pointed out by Dr. M. Cowperthwaice.
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The other aspect of the problem concerns page-matrix interaction
for the specific loading situation. To usce these gages effectively, onc
must know the state of strain in the macrix and have some idea of the
matrix response. Analyses can then be performed to determine the pape
response sensitivity to various matrix material property parameters.
Such calculations can provide the optimal gage package shape and determine
the parameter that dominates the gage response.  For example, in the uni-
axial strain experiments discussed in this report, the dimensional
terms had negligible contribution. For divergent flow, this is not true
and the contribution of the dimensional changes nceeds to be assessed.
How effectively a nonpiezoresistive material can be used to assess strains
in the gage itself can also be examined by performing a gage matrix

interaction analysis.

The gage matrix interaction analvsis is also important tfor evaluating
the effect of the gage package on the matrix stresses in the vicinity of !
the gage. The presence of the gage can induce vielding or other re-

arrangement of stresses near the gage.

In conclusion, piezoresistance gages can be used in complex loading
!
situations provided gage constants are evaluated and gage matrix inter- J
action analyses are performed to ensure that the measurements can indecd
be inverted to determine the stresses of interest.  Similar remarks apoly }

to the development of strain-compensated gage packages.

.
Also see discussion at the end  of Scetion 2,
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APPENDIX A
ELASTIC-PLASTIC RELATIONS

In this appendix, we derive the equations relating stresses and
strains thar are used in Section 3. The elastic-plastic model used in
deriving these equations is presented in Section 2.2. The relations
presented here are for 1- and 2-strain states in the material (assuming
small strain). A detailed discussion of elastic-plastic relations for

5
1-D strain is given in the paper by Fowles.

One-Dimensional Strain (¢ # 0, ¢ =+ = 0)
X y z

This strain configuration has been extensively studied in shock

wave studies. In the elastic region, we have the stresses

[@]
1]

O+ 2
x
(A1)

€
0 = 0 = At
y z X

Using the von Mises yield condition, we can write the compressive

*
stress at yield as

1 - v
A R S 4
PZLL - Yo L0 (A 2)

. o . . .
where 2, 1, and v are elastic constants; Y is yield stress in simple

. HEL . . - .
tension; and P is the Hugoniot elastic limit. Beyond the clastic
X

limic
P ~-P=_% (A.3)

where P is the mean compressive stress and Y ois yield stress in simple

tension.,  Thus, in the plastic range the compressive stress o is offset

by 2Y/3 from the hydrostat. For perfectly plastic solid, vV = v

. .
P's denote compressive stress as positive,

e ket % imnme




Two~Dimensional Strain (tx = 4 0, ¢ =0)

For this strain configuration, we have the stresses

e e e
o, = }\(t’x + s,y) +  2uc N
e e e
o = AMe_+¢ +  2ue A4
y ( N y) hey (A.4)
e e
o, = A(cx + ay)

Combining the above equations, we obtain

° mm % ~ Oz
S (A.5)
and
o = Aty (c ~0) (A.6)
X H X z
Using the von Mises condition, we have at the yield point
HEL 1 0
P i) Y (A.7)
and
1 0
P -P = Y (A.8)
X 3

Here the PiEL corresponds to the compressive stress at yield for the
two-dimensional strain configuration. Y represents yield stress in
simple tension. By eliminating Vv between Equations (A.2) and (A.7), we
obtain

p n 0

PZD = 2 -Y (A.9)

X0 XO

2D
where P
X0

compressive stress at yiceld in a wo-dimensional confipuration.

PlD
X0

compressive stress at yicld in a one-dimensional configuration.
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Equation (A.9) gives the compressive stress at yield for two-
dimensional strain. Because Pi2_> YO, the HEL in two~dimensional strain
is higher than that in one-dimensional strain. The offset between the
mean stress and PX is Y/3--that is, half of the offset observed in the

one-dimensional strain.
.

Using the equations presented in this appendix, we can compute
the mean stress or pressure corresponding to a compressive stress for

the one- or two~dimensional strain configuration.

e
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APPENDIX B
DIMENSIONAL TERM FOR SIMPLE LOAD PATHS

The dimensional term in Equation (2.12) can be cxpressed

of density changes using the small strain approximation. The
*
the strain tensor is expressed as

kmm = #‘O/L' - 1
Hydrostatic Loading ({11 =,y = »33)
I § U S
(1 + K22) (1 + t33) < zma) 3
1+ -
3
SN 1/3 -1/3 me
(/o) = (O + e ) Pey
The equivalence of (B.2) and (B.3) allow the dimensional
hydrostatic loading to be expressed as (pH/p))l/j
C
One-bimensional Strain €4y 7133~ % 12 70
B | W o
(1 + L22) (1 + i33) 1+ . 1D "o
Two-Pimensional Serain {14y = tyy # 0 1937 9
I _-.,1, ,+ i,l_luw.,- ) - _lﬁ - = “')])/;
1+ »22) (1 + t33) 1 - 0

in terms

trace of

(B.1)

(B.2)

(B.3)

term for

(B.4)

(B.5)

In Equations (B.3) through (B.5), the density in the strained

material refers to the density for that particular loading.

*
This is using an Eulerian strain measure and noting that strain is

positive in tension,
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APPENDIX C
RESIDUAL RESISTANCE UPON LONGITUDINAL UNLOADING

Presented below are the equations needed to compute the residual
resistance upon longitudinal unloading from a plastic state. The rela-
tions are for one- and two-dimensional strain states and use the small

strain approximation.

The residual resistance change can be computed using Equation (3.4)

in Section 3.

AR3
—2 = o+ .
R "3n n G3mrm (c.1)
)
For uniaxial strain loading (gl # 0, ty =g = 0), Equation (C.1) upon
longitudinal unloading becomes
1D
AR3
U - _ )
g Mo Oy F W04 = 1y (C.2)
Res.

For two-dimensional strain (>1 =+, #0, tq = 0), Equation (C.1) upon

longitudinal unloading becomes

Res.

The stresses and strains appearing in Equations (C.2) and (C.3) are
determined from the elastic-plastic relations present in Appendix AL A
graphical representation for the loading and unloading paths is shown in
Figure C.l.* Various stress components as a function of volume strain
for one~ and two-dimensional strain have been shown and are explained

next.

The curves shown are for Yb.
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For one-dimensional strain loading, OABCD represents the longi-
tudinal stress-strain path. Points A and C mark the onset of yielding.
The lateral stress~strain path corresponding to OABCD is marked as OFFCH
where the prints E and G mark the onset of yielding. The line OP represents
the mean stress-strain path. By writing algebraic equations for these
lines, we can calculate the non-zero stresses and strains upon longitudinal

unloading.

For two-dimensional strain, we have shown only the loading path to
simplify the figure. OJK represents the longitudinal stress-strain curve
and OLM represents the path for the other stress. Strains corresponding
to J and L mark the onset of yielding. The mean stress-strain curve
stays the same as that for one-dimensional strain. As shown in Appendix A,
the yielding under two-dimensional strain occurs at a different strain
level, and the longitudinal stress offsets from the mean stress-strain

curve are smaller.

For an elastic-perfectly plastic solid, above a threshold strain
the residual stresses and strains are constant because the stresses upon
longitudinal unloading are limited by the yield stress. The calculations
performed here consisted of evaluating the threshold strain for one~ and
two-dimensional loading. Below the threshold strain, a linear relationship

can be used to evaluate the residual stresses.
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